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Enhanced synchronizability via age-based coupling
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In this Brief Report, we study the synchronization of growing scale-free networks. An asymmetrical age-
based coupling method is proposed with only one free parameter «. Although the coupling matrix is asym-
metric, our coupling method could guarantee that all the eigenvalues are non-negative reals. The eigenratio R

will approach 1 in the large limit of a.
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One of the main goals in the study of network science is
to understand the relation between the network structure and
the dynamical processes performed upon it [1,2]. A typical
collective dynamic on the networked system is synchroniza-
tion, where all the participants behave alike, even exactly the
same. This phenomenon exists everywhere from physics to
biology [3] and has been observed for hundreds of years.
With the partial knowledge of relations between network
structure and its synchronizability [4—8], scientists have pro-
posed many methods to enhance the network synchronizabil-
ity [9-18]. Generally speaking, these methods can be divided
into two classes: the modification of the network structure
[9-11] and the regulation of the coupling pattern [12-18]. In
the former class, networks are modified either to shorten the
average distance [10] or to eliminate the maximal between-
ness [9,11]. In the latter case, the network structure is kept
unchanged, while the coupling matrix is elaborately designed
(often asymmetrically) to improve the synchronizability
[12-18].

The first coupling pattern other than the symmetric case
was proposed by Motter, Zhou, and Kurths (MZK) [12-14],
in which the coupling strength a node i receives from its
neighbors is inverse to klﬁ with k; the degree of i. The cou-
pling pattern can sharply enhance the network synchroniz-
ability, with B=1 the optimal case. After this pioneering
work, many coupling patterns [15-18] have been presented
to further enhance the network synchronizability. In Ref.
[15], Hwang et al. presented a coupling method taking into
account the age of nodes, which makes the network even
more synchronizable than the optimal case of the MZK cou-
pling pattern. In this pattern, each node receives coupling
signals from its neighbors, with each receiving coupling
strength taking one of the two values: if the neighbor is
older, the coupling strength takes the larger value, otherwise
it takes the smaller one. To separate the different coupling
situations (i.e., from older to younger and from younger to
older) by using two discrete coupling strengths is the sim-
plest way one can imagine. However, since each node has its
own age, a coupling method taking into account the age dif-
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ference between each pair of coupled nodes may further en-
hance the synchronizability. Moreover, the coupling matrix
in Ref. [15] has complex eigenvalues, leading to a compli-
cated analysis. An elaborately designed method, as shown in
this Brief Report, could guarantee that all the eigenvalues are
nonnegative reals, thus one can easily predict the synchroni-
zability of the underlying network by considering the real
eigenratio only. This method is analogous to the modified
MZK method introduced in Ref. [14], which further en-
hances synchronization without involving any complex ei-
genvalue. However, in contrast to the modified MZK method
[14], our model is based on the ages rather than degrees of
the nodes.

In a dynamical network, each node represents an oscilla-
tor and the edges represent the couplings between nodes. For
a network of N linearly coupled identical oscillators, the dy-
namical equation of each oscillator can be written as

N
X' =F(x) -0 GH(X), i=1.2,...N, (1)

j=1

where x'=F(x’) governs the essential dynamics of the ith
oscillator, H(x’) the output function, o the coupling strength,
and G;; an element of the N X N coupling matrix G. To guar-
antee the synchronization manifold an invariant manifold,
the matrix G should have zero row-sum. The collective dy-
namic starts from a disorder initial configuration, under suit-
able conditions, the couplings will make the oscillators’
states nearer and nearer. Eventually, all the individuals oscil-
late together and a synchronization phenomenon emerges.

In the simplest symmetric way, the coupling matrix G has
the same form as the Laplacian matrix L, that is, G;=L
where

ij»

k; for i=j,
L;=y—-1 for jEA,, (2)

ij
0  otherwise.

Here A; is the set of i’s neighbors. Because of the symmetry
and the positive semidefinite of L, all its eigenvalues are
nonnegative reals and the smallest eigenvalue A, is always
zero, for the rows of L have zero sum. And if the network is
connected, there is only one zero eigenvalue. Thus, the ei-
genvalues can be ranked as A\g<<A\j =N, =--=N\y_;. When
the stability zone is bounded, according to the criteria of the
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master stability function [19,20] (see also the unbounded
case [21,22]), the network synchronizability can be measured
by the eigenratio R=Ny_;/\;: The smaller it is the better the
network synchronizability and vice versa.

The couplings between nodes are not limited to the sym-
metric mode, however, generally, the eigenratio of an asym-
metric coupling matrix is complex (e.g., the eigenratio in
Ref. [15]). Therefore, in order to ensure that the network has
strong synchronizability, not only should the ratio of the real
part be taken into account, but also the imaginary part must
be guaranteed to be as small as possible. In Ref. [15], the
simulation result indicated that although the ratio of the real
part is the smallest, at the same time the imaginary part is the
largest. To overcome this blemish and give further enhance-
ment of synchronizability, we bring forward a coupling pat-
tern in which the coupling strength between two connected
nodes is the function of their age difference. The age of node
i is signed by the time it enters into the network, thus smaller
i corresponds to older age. The coupling matrix proposed
here is

1 for i=j,
o—ali=iIN
G”= - T for ]E Ai’ (3)
0 otherwise,

where §;=2,¢c Aie‘“o‘i)/N is the normalization factor. In this
coupling pattern, the case of a=0 degenerates to the optimal
case of MZK coupling pattern. When >0, the old nodes
have stronger influence than the younger ones; while for «
<0, younger nodes are more influential.

It can be proved that although the coupling between nodes
is asymmetric, all the eigenvalues of matrix G are reals. Note
that the coupling matrix defined in Eq. (3) can be written as

G=DL', 4)
where
D = diag(e®¥S,,e*¥S,,e%%S;, ... ,e*NSy) Q)

is a diagonal matrix and L’=(Li'j) is a symmetric zero row-
sum matrix, whose off-diagonal elements are

Lij=—e e, (6)
From the identity [13]
det(DL’ — NI) = det(D'>L'D"? = \I) (7)

valid for any A, we have that the spectrum of eigenvalues of
matrix G is equal to the spectrum of a symmetric matrix
defined as

H=Dl/2L’D1/2. (8)

As a result, although the coupling matrix G is asymmetric,
the eigenvalues of matrix G are all nonnegative reals and the
smallest eigenvalue is always zero. Therefore, in contrast to
the complicated case in Ref. [15], the synchronizability
based on the present coupling pattern can be measured di-
rectly by the real eigenratio R.
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FIG. 1. (Color online) The eigenratio R vs a in BA networks
with average degree (k)=6. The inset displays the details for the
interval @ €[—4,1]. Each data point is obtained by averaging over
50 different network configurations. The eigenratio R goes to 1 in
the large limit of «.

In Fig. 1, we report the changes of eigenratio R with the
parameter « in BA networks [23] at different sizes. One can
easily conclude from Fig. 1 that with the increase of «a the
eigenratio decreases sharply, no matter what the network
size. It is shown that in growing networks, if the couplings
from older nodes are stronger than the reverse, the network
will get better synchronizability. Otherwise, if the coupling
from younger to older ones is strengthened (see the cases of
a<0 in the inset), the system becomes very hard to synchro-
nize. When « goes to infinity, the eigenratio will converge to
1, which is the smallest eigenratio corresponding to the best
synchronizability —[24]. Actually, in the case «
— 4+, each node is coupled by its oldest neighbor, while the
oldest node in the network is uncoupled. Thus, the coupling
matrix (whose rows are sorted by the descending order of
ages) becomes a lower triangular matrix with all the diagonal
elements are 1 except the first one Gy, being equal to zero.
Therefore, all the nonzero eigenvalues are 1.

Although there is a method to design a coupling pattern
having optimal synchronizability (i.e., R=1) [24], for grow-
ing networks, using the age of each node is a simple and
feasible way since to know any other measures of nodes may
cost much for huge-size system, and this age-based coupling
can guarantee the connectivity of the whole network. Math-
ematically speaking, the synchronizability here is a measure
on the stability of invariant synchronization manifold. We
call a synchronization manifold is stable if the dynamical
system can automatically return to this manifold after a per-
turbation. A network G has better synchronizability than an-
other network G’ means that any collective dynamics with
identical oscillators upon G’ having a stable synchronization
manifold must have a stable synchronization manifold for G,
while there exists certain dynamics having stable synchroni-
zation manifold for G, but not for G'. However, better syn-
chronizability does not guarantee a shorter converging time
from disorder initial configuration to synchronized state. Ac-
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tually, Nishikawa and Motter [24] found that the synchroniz-
ing process may take longer in the optimal network with R
=1 (see also a similar conclusion for nonidentical oscillators
[25]). Based on the current coupling pattern, one can obtain
an acceptable trade-off between synchronizability and con-
verging time by tuning the parameter «. Moreover, compar-
ing with the pioneer work by Hwang er al. [15], our coupling
method can achieve even smaller R, and does not need to
deal with the complicated and tedious analysis on complex
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eigenratios. Our elaborately designed coupling pattern can
guarantee the eigenratio a real number, just as in the degree-
based models of Refs. [14,18].
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